Перевод: со всех языков на все языки

со всех языков на все языки

mechanical description

  • 1 mechanical description

    1. конструктивная реализация интерфейса

     

    конструктивная реализация интерфейса
    Совокупность требований к конструктивным элементам организации связи между радиоэлектронными средствами в среде, используемой для передачи информации и к конструктивному исполнению элементов РЭС.
    [ ГОСТ Р 50304-92 ]

    Тематики

    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > mechanical description

  • 2 quantum mechanical description of similarity

    Универсальный англо-русский словарь > quantum mechanical description of similarity

  • 3 описание


    description
    - и работа (раздел рэ)description and operation
    в разделе рэ "описание и работа" содержатся сведения о конструкции, принципе действия, работе и управлении системой в целом и соответствующих подсистем. — "description and operation" portion of the manual ехplains configuration, function, operation and control of the complete system and its subsystems.
    - и принцип действия — description and principle /theory/ of operation
    - и принцип действия (раздел рэ)description and operation
    -, краткое — brief description
    - работы электрической (принципиальной) схемы (заголовок раздела)electrical description
    - схемыsystem description
    - схемы, кинетической (заголовок раздела) — mechanical description
    - схемы электрической (заголовок раздела руководства)electrical description
    -, техническое — description

    Русско-английский сборник авиационно-технических терминов > описание

  • 4 конструктивная реализация интерфейса

    1. mechanical description

     

    конструктивная реализация интерфейса
    Совокупность требований к конструктивным элементам организации связи между радиоэлектронными средствами в среде, используемой для передачи информации и к конструктивному исполнению элементов РЭС.
    [ ГОСТ Р 50304-92 ]

    Тематики

    • системы для сопряж. радиоэлектр. средств интерфейсные

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > конструктивная реализация интерфейса

  • 5 схема


    diagram
    (графическое изображение соединений и функциональных зависимостей в системе)
    - (система)system
    - (электрическая или эпектронная сеть)circuitry
    - аварийного покидания самолета в воздухе (пути покидания ла)bailout escape routes
    - аварийного покидания ла на земле (пути покидания ла)evacuation routes
    -, аэродинамическая — aerodynamic configuration
    - взлета (рис. 112) — takeoff pattern
    - в трех проекциях (рис. 130) — three-view outline drawing
    - газовоздушного тракта двигателя (рис. 47) — engine gas flow
    -, двухтактная (усилителя) — push-pull circuit

    а push-pull three-stage amplifier.
    - действияfunctional diagram
    - деления самолета на зоныzoning diagram
    - деления самолета на зоны с указанием эксплуатационных лючковaircraft zoning diagram and асcess door and panel identification
    - дистанций (рис. 131) — station diagram
    - захода на посадку (рис. 115) — landing /approach/ pattern
    - "и" (в вычислительном устройстве) — and circuit, and gate (circuit)

    in an electronic computer, a gate circuit with more than one control (input) terminal.
    -, интегральная — integrated circuit
    цепь собрана на интегральных схемах. — а system uses /based on use of/ integrated circuits.
    -, кинематическая — functional diagram
    -, кинематическая (заголовок раздела руководства) — mechanical description
    - локализация отказовfault isolation diagram
    -, мнемоническая (топливной системы) — (fuel system) mnemonic diagram
    -, монолитная (эл.) — solid-state circuitry

    all solid-state circuitry is used in many key chassis areas.
    -, монтажная (эл.) — wiring diagram
    электромонтажная схема, показывающая расположение и содержащая обозначения элементов и соединительных проводников блока или цепи. — the wiring diagram shall be an installation drawing showing and identifying the units and conductors that make up the installation.
    - нагружения (элементов системы управления рулем высоты)(elevator control system) loading conditions
    - обратной связиfeedback circuit
    - организации технологического процесса ремонта (карта)overhaul flow (chart)
    - основных технологических разъемовproduction breakdown diagram
    - отыскания и устранения неисправностейtrouble shooting chart
    -, печатная (плата) — printed circuit (board)
    - поиска неисправностей (карта)trouble shooting card
    - (маршрут) полета в зоне ожидания (на малой высоте) — (low altitude) holding pattern. the economical engines permit the aircraft to fly in the low altitude holding pattern.
    - (маршрут) полета в зоне ожидания на экономическом режиме. — economic holding pattern. reduced fuel consumption is obtained by flying in economic holding pattern.
    - (профиль) полетаflight profile
    -, полумонтажная (в афс) — wiring diagram
    - последовательности работы (агрегатов)sequence-of-operation diagram
    - приводов агрегатов, кинематическая — accessory drives gear train (diagram)
    -, принципиальная (графическое изображение) — schematic diagram
    схема наглядно иллюстрирует взаимодействие элементов сложных систем (цепей) и облегчает отыскание и устранение неисправностей в этих системах. элементы изображаются условными графическими обозначениями. — the schematic diagram facilifates tracing and trouble shooting complex circuits. it shows by means of graphic symbols all the components required to perform system operation.
    -, принципиальная электрическая (заголовок раздела ру ководства) — electrical description
    -, принципиальная упрощенная — simplified schematic diagram
    - проверки, поверочная (схема соединений поверочного оборудования) — test set up /setup/ (diagram)
    - работы (графическое изображение)functional diagram
    - работы (принцип действия, заголовок раздела) — operation
    - разворота (самолета на земле)turning circle
    - размещения и швартовки грузов (в грузовой кабине) — cargo arrangement and lashing /tie-down/ diagram
    - расположения агрегатовarrangement diagram
    - ремонта, технологическая (карта) — overhaul flow chart
    - соединенийconnection diagram
    - соединений (полумонтажная в афс)wiring diagram
    - соединений поверочной установки (подрисуночная надпись бпок-схемы)test equipment setup (diagram)
    -, структурная (блок-схема) — block diagram
    - технологических разъемов (изображение в расчлененном виде) (рис. 1) — exploded view drawing (showing major components of airplane)
    - технологичесмих разъемов (групп) самолетаaircraft major components exploded view (diagram)
    - технологического процесса ремонта (изделия) — overhaul procedures. overhaul procedures include cleaning, disassembly, etc.
    - трубопроводовpiping diagram
    ·-, упрощенная — simplified diagram
    -, упрощенная принципиальная — simplified schematic diagram
    - установки (агрегата)installation diagram
    - "утка" (о самолете) — canard configuration
    - фазовой автоподстройки частоты (фапч)phase-locked loop (pll)
    -, фидерная (эл.) — wiring diagram
    -, функциональная (блок-схема) — block diagram
    -, цветовая — color scheme
    цветовая схема салона выполнена в зеленоватых и кремовых тонах. — color scheme of the passenger cabin is of green and cream.
    -, центровочная (заголовок) (рис. 132) — (airplane) center of gravity (cg) limits
    - членения (самолета или агрегата) (рис. 1) — exploded view drawing
    - шассиlanding gear configuration
    - шасси, трехопорная (с передней опорой) — tricycle landing gear
    - шасси, трехопорная (с хвостовым колесом) — tail wheel(-type) landing gear
    - швартовки грузов (в грузовой кабине) — cargo lashing /tie-down/ diagram
    - швартовки техники (колесной и гусеничной) (в грузовой кабине) — vehicle lashing /tie-down/ diagram
    - шпангоутов (дистанций) фюзеляжа (для определения координат цт)station diagram
    -, электрическая (графическое изображение) — electrical diagram
    -, электрическая (заголовок раздела руководства) — electrical description
    -, электрическая (система) — electrical system
    -, электрическая (совокупность электрических цепей) — (electrical) circuitry
    -, электромонтажная — wiring diagram
    альбом фидерных с. — wiring diagram manual
    блок-с. — block diagram
    порядок сборки поверочной с. — test set-up procedure
    быть выполненным (реализованным, собранным) по с. — be built on /around/ (circuit), be based on /using, employing/ circuit

    the rectifier is built on a bridge circuit.
    доработка с. (эл. цепей) — circuit modification
    доработка с. (внесение изменений в эл. схемы в руководстве, инструкции) — revision to (wiring) diagram
    собирать по с. — build (smth) on /around/ as...

    connect amplifier as a differential circuit.
    собирать схему проверки — connect equipment in setup

    Русско-английский сборник авиационно-технических терминов > схема

  • 6 квантовомеханическое описание подобия

    Универсальный русско-английский словарь > квантовомеханическое описание подобия

  • 7 Alden, George I.

    [br]
    b. 22 April 1843 Templeton, Massachusetts, USA
    d. 13 September 1926 Princeton, Massachusetts, USA
    [br]
    American mechanical engineer and professor of engineering.
    [br]
    From 1868 to 1896 George Alden was head of the steam and mechanical engineering departments at the Worcester Polytechnic Institute, Worcester, Massachusetts. He made a donation in 1910 to establish a hydraulic laboratory at the Institute, and later a further donation for an extension of the laboratory which was completed in 1925. He was Chairman of the Board of Norton (Abrasives) Company and made a significant contribution to the theory of grinding in his paper in 1914 to the American Society of Mechanical Engineers. He was a member of that society from 1880, the year of its foundation, and took an active part in its proceedings.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1891–3.
    Bibliography
    1914, "Operation of grinding wheels in machine grinding", Transactions of the American Society of Mechanical Engineers 36:451–60.
    Further Reading
    For a description of the Alden Hydraulic Laboratory, see Mechanical Engineering, June 1926: 634–5.
    RTS

    Biographical history of technology > Alden, George I.

  • 8 Hetzel, Max

    [br]
    b. 5 March 1921 Basle, Switzerland
    [br]
    Swiss electrical engineer who invented the tuning-fork watch.
    [br]
    Hetzel trained as an electrical engineer at the Federal Polytechnic in Zurich and worked for several years in the field of telecommunications before joining the Bulova Watch Company in 1950. At that time several companies were developing watches with electromagnetically maintained balances, but they represented very little advance on the mechanical watch and the mechanical switching mechanism was unreliable. In 1952 Hetzel started work on a much more radical design which was influenced by a transistorized tuning-fork oscillator that he had developed when he was working on telecommunications. Tuning forks, whose vibrations were maintained electromagnetically, had been used by scientists during the nineteenth century to measure small intervals of time, but Niaudet- Breguet appears to have been the first to use a tuning fork to control a clock. In 1866 he described a mechanically operated tuning-fork clock manufactured by the firm of Breguet, but it was not successful, possibly because the fork did not compensate for changes in temperature. The tuning fork only became a precision instrument during the 1920s, when elinvar forks were maintained in vibration by thermionic valve circuits. Their primary purpose was to act as frequency standards, but they might have been developed into precision clocks had not the quartz clock made its appearance very shortly afterwards. Hetzel's design was effectively a miniaturized version of these precision devices, with a transistor replacing the thermionic valve. The fork vibrated at a frequency of 360 cycles per second, and the hands were driven mechanically from the end of one of the tines. A prototype was working by 1954, and the watch went into production in 1960. It was sold under the tradename Accutron, with a guaranteed accuracy of one minute per month: this was a considerable improvement on the performance of the mechanical watch. However, the events of the 1920s were to repeat themselves, and by the end of the decade the Accutron was eclipsed by the introduction of quartz-crystal watches.
    [br]
    Principal Honours and Distinctions
    Neuchâtel Observatory Centenary Prize 1958. Swiss Society for Chronometry Gold Medal 1988.
    Bibliography
    "The history of the “Accutron” tuning fork watch", 1969, Swiss Watch \& Jewellery Journal 94:413–5.
    Further Reading
    R.Good, 1960, "The Accutron", Horological Journal 103:346–53 (for a detailed technical description).
    J.D.Weaver, 1982, Electrical \& Electronic Clocks \& Watches, London (provides a technical description of the tuning-fork watch in its historical context).
    DV

    Biographical history of technology > Hetzel, Max

  • 9 Mudge, Thomas

    SUBJECT AREA: Horology
    [br]
    b. 1715 Exeter, England
    d. 14 November 1794 Walworth, England
    [br]
    English clock-and watchmaker who invented the lever escapement that was ultimately used in all mechanical watches.
    [br]
    Thomas Mudge was the son of a clergyman and schoolmaster who, recognizing his son's mechanical aptitude, apprenticed him to the eminent London clock-and watchmaker George Graham. Mudge became free of the Clockmakers' Company in 1738 and set up on his own account after Graham's death in 1751. Around 1755 he formed a partnership with William Dutton, another apprentice of Graham. The firm produced conventional clocks and watches of excellent quality, but Mudge had also established a reputation for making highly innovative individual pieces. The most significant of these was the watch with a detached-lever escapement that he completed in 1770, although the idea had occurred to him as early as 1754. This watch was purchased by George III for Queen Charlotte and is still in the Royal Collection. Shortly afterwards Mudge moved to Plymouth, to devote his time to the perfection of the marine chronometer, leaving the London business in the hands of Dutton. The chronometers he produced were comparable in performance to those of John Harrison, but like them they were too complicated and expensive to be produced in quantity.
    Mudge's patron, Count Bruhl, recognized the potential of the detached-lever escapement, but Mudge was too involved with his marine chronometers to make a watch for him. He did, however, provide Bruhl with a large-scale model of his escapement, from which the Swiss expatriate Josiah Emery was able to make a watch in 1782. Over the next decade Emery made a limited number of similar watches for wealthy clients, and it was the performance of these watches that demonstrated the worth of the escapement. The detached-lever escapement took some time to be adopted universally, but this was facilitated in the nineteenth century by the development of a cheaper form, the pin lever.
    By the end of the century the detached-lever escapement was used in one form or another in practically all mechanical watches and portable clocks. If a watch is to be a good timekeeper the balance must be free to swing with as little interference as possible from the escapement. In this respect the cylinder escapement is an improvement on the verge, although it still exerts a frictional force on the balance. The lever escapement is a further improvement because it detaches itself from the balance after delivering the impulse which keeps it oscillating.
    [br]
    Principal Honours and Distinctions
    Clockmaker to George III 1776.
    Further Reading
    T.Mudge, Jr, 1799, A Description with Plates of the Time-Keeper Invented by the Late Mr. Thomas Mudge, London (contains a tract written by his father and the text of his letters to Count Bruhl).
    C.Clutton and G.Daniels, 1986, Watches, 4th edn, London (provides further biographical information and a good account of the history of the lever watch).
    R.Good, 1978, Britten's Watch \& Clock Maker's Handbook Dictionary and Guide, 16th edn, London, pp. 190–200 (provides a good technical description of Mudge's lever escapement and its later development).
    DV

    Biographical history of technology > Mudge, Thomas

  • 10 Zonca, Vittorio

    [br]
    b. c. 1568 Italy
    d. 1603 Italy
    [br]
    Italian architect who wrote a book on machines.
    [br]
    All that is known of Zonca is included on the frontispiece of the book that is his only claim to fame. He is there described as architect to the "Magnificent Community of Padua". He compiled a book on machines entitled Novo teatro de machine ed edificii (New Display of Machines and Edifices), illustrated with numerous fine engravings. It was printed in Padua in 1607, four years after his death, by Francesco Bertelli, who said of the book that it "came into my hands", as though he knew nothing of the author.
    During the sixteenth and early seventeenth centuries, a number of illustrated books on technical subjects appeared, compiled by knowledgeable and educated authors. These books greatly helped the spread of information about the technical arts throughout Europe. There were several books on mechanical devices, notably those by Ramelli, Besson and Zonca. In some ways, Zonca's is the most interesting, for it seems closest to the mechanical practice of the time. Several of the machines he describes are referred to as being in use in Padua or Venice and he suggests ways of improving them. The range of machines is wider than in other similar works and includes pumps, cranes, powder mills, printing and bookbinding presses and textile machines. Perhaps the most interesting of these is the water-driven silk-threading machine, since some of its components resemble those in use in the twentieth century. Spinning mills were widely used in the silk industry in sixteenth-century Italy, and Zonca offers a full description of one. He also shows the first example of an oblique treadwheel, driven by oxen for the grinding of grain. Even so, despite all the practical detail, the book ends, like others of its kind, with fantasy, in a description of a perpetual-motion machine.
    [br]
    Further Reading
    A.G.Keller, 1964, A Theatre of Machines, London: Chapman \& Hall (provides brief details and illustrations from the books by Ramelli, Besson and Zonca).
    LRD

    Biographical history of technology > Zonca, Vittorio

  • 11 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 12 Bodmer, Johann Georg

    [br]
    b. 9 December 1786 Zurich, Switzerland
    d. 30 May 1864 Zurich, Switzerland
    [br]
    Swiss mechanical engineer and inventor.
    [br]
    John George Bodmer (as he was known in England) showed signs of great inventive ability even as a child. Soon after completing his apprenticeship to a local millwright, he set up his own work-shop at Zussnacht. One of his first inventions, in 1805, was a shell which exploded on impact. Soon after this he went into partnership with Baron d'Eichthal to establish a cotton mill at St Blaise in the Black Forest. Bodmer designed the water-wheels and all the machinery. A few years later they established a factory for firearms and Bodmer designed special machine tools and developed a system of interchangeable manufacture comparable with American developments at that time. More inventions followed, including a detachable bayonet for breech-loading rifles and a rifled, breech-loading cannon for 12 lb (5.4 kg) shells.
    Bodmer was appointed by the Grand Duke of Baden to the posts of Director General of the Government Iron Works and Inspector of Artillery. He left St Blaise in 1816 and entered completely into the service of the Grand Duke, but before taking up his duties he visited Britain for the first time and made an intensive five-month tour of textile mills, iron works, workshops and similar establishments.
    In 1821 he returned to Switzerland and was engaged in setting up cotton mills and other engineering works. In 1824 he went back to England, where he obtained a patent for his improvements in cotton machinery and set up a mill near Bolton incorporating his ideas. His health failing, he was obliged to return to Switzerland in 1828, but he was soon busy with engineering works there and in France. In 1833 he went to England again, first to Bolton and four years later to Manchester in partnership with H.H.Birley. In the next ten years he patented many more inventions in the fields of textile machinery, steam engines and machine tools. These included a balanced steam engine, a mechanical stoker, steam engine valve gear, gear-cutting machines and a circular planer or vertical lathe, anticipating machines of this type later developed in America by E.P. Bullard. The metric system was used in his workshops and in gearing calculations he introduced the concept of diametral pitch, which then became known as "Manchester Pitch". The balanced engine was built in stationary form and in two locomotives, but although their running was remarkably smooth the additional complication prevented their wider use.
    After the death of H.H.Birley in 1846, Bodmer removed to London until 1848, when he went to Austria. About 1860 he returned to his native town of Zurich. He remained actively engaged in all kinds of inventions up to the end of his life. He obtained fourteen British patents, each of which describes many inventions; two of these patents were extended beyond the normal duration of fourteen years. Two others were obtained on his behalf, one by his brother James in 1813 for his cannon and one relating to railways by Charles Fox in 1847. Many of his inventions had little direct influence but anticipated much later developments. His ideas were sound and some of his engines and machine tools were in use for over sixty years. He was elected a Member of the Institution of Civil Engineers in 1835.
    [br]
    Bibliography
    1845, "The advantages of working stationary and marine engines with high-pressure steam, expansively and at great velocities; and of the compensating, or double crank system", Minutes of the Proceedings of the Institution of Civil Engineers 4:372–99.
    1846, "On the combustion of fuel in furnaces and steam-boilers, with a description of Bodmer's fire-grate", Minutes of the Proceedings of the Institution of Civil Engineers 5:362–8.
    Further Reading
    H.W.Dickinson, 1929–30, "Diary of John George Bodmer, 1816–17", Transactions of the Newcomen Society 10:102–14.
    D.Brownlie, 1925–6, John George Bodmer, his life and work, particularly in relation to the evolution of mechanical stoking', Transactions of the Newcomen Society 6:86–110.
    W.O.Henderson (ed.), 1968, Industrial Britain Under the Regency: The Diaries of Escher, Bodmer, May and de Gallois 1814–1818, London: Frank Cass (a more complete account of his visit to Britain).
    RTS

    Biographical history of technology > Bodmer, Johann Georg

  • 13 en un instante

    in a minute
    * * *
    = in a flash, at a moment's notice, in a twinkling, in a snap, in a heartbeat, in a jiffy, in a second, in a trice
    Ex. In a flash, without a moment wasted on intelligent astonishment, the poor accosted earthling gives a detailed description of the instrument he apparently assumes without further investigation the stranded space man needs.
    Ex. Be sure any mechanical equipment required (tape machines, film projectors, etc.) does actually work, can be replaced at a moment's notice if it breaks down, and is handled by a competent operator.
    Ex. You can send an email message from Boston to Addis Ababa in a twinkling of an eye, but that message may be expunged in a second twinkling.
    Ex. Firefox installs in a snap, and it's free.
    Ex. Life is too short, and it can be over in a heartbeat.
    Ex. The article is entitled 'Chemistry in a Jiffy'.
    Ex. A potato can be peeled in a second by steaming first for an hour before dipping it in ice water.
    Ex. In a trice we find ourselves left without civilisation -- just a push of a wrong button and everything goes straight to a primitive state.
    * * *
    = in a flash, at a moment's notice, in a twinkling, in a snap, in a heartbeat, in a jiffy, in a second, in a trice

    Ex: In a flash, without a moment wasted on intelligent astonishment, the poor accosted earthling gives a detailed description of the instrument he apparently assumes without further investigation the stranded space man needs.

    Ex: Be sure any mechanical equipment required (tape machines, film projectors, etc.) does actually work, can be replaced at a moment's notice if it breaks down, and is handled by a competent operator.
    Ex: You can send an email message from Boston to Addis Ababa in a twinkling of an eye, but that message may be expunged in a second twinkling.
    Ex: Firefox installs in a snap, and it's free.
    Ex: Life is too short, and it can be over in a heartbeat.
    Ex: The article is entitled 'Chemistry in a Jiffy'.
    Ex: A potato can be peeled in a second by steaming first for an hour before dipping it in ice water.
    Ex: In a trice we find ourselves left without civilisation -- just a push of a wrong button and everything goes straight to a primitive state.

    Spanish-English dictionary > en un instante

  • 14 Ingersoll, Simon

    [br]
    b. 3 March 1818 Stamford, Connecticut, USA
    d. 24 July 1894 Stamford, Connecticut, USA
    [br]
    American mechanic, inventor of a rock drill
    [br]
    Ingersoll worked on his father's farm and spent much of his time carrying out all kinds of mechanical experiments until 1839, when he went to Long Island, New York, to work on another farm. Having returned home in 1858, he received several patents for different mechanical devices, but he did not know how to turn his inventive talent into economic profit. His patents were sold to others for money to continue his work and support his family. In 1870, working again on Long Island, he by chance came into contact with New York City's largest contractor, who urged him to design a mechanical rock drill in order to replace hand drills in the rock-excavation business. Within one year Ingersoll built several models and a full-size machine at the machine shop of Henry Clark Sergeant, who contributed several improvements. They secured a joint patent in 1871, which was soon followed by a patent for a rock drill with tappet-valve motion.
    Although the Ingersoll Drill Company was established, he again sold the patent rights and went back to Stamford, where he continued his inventive work and gained several more patents for improving the rock drill. However, he never understood how to make a fortune from his patents, and he died almost penniless. His former partner, Sergeant, who had formed his own drill company on the basis of an entirely novel valve motion which led to compressed air being used as a power source, in 1888 established the Ingersoll- Sergeant Drill Company, which in 1905 merged with Rand Drill Company, which had been a competitor, to form the Ingersoll-Rand Company. This merger led to many achievements in manufacturing rock drills and air compressors at a time when there was growing demand for such machinery.
    [br]
    Further Reading
    Dictionary of American Biography (articles on both Ingersoll and Sergeant). W.L.Saunders, 1910, "The history of the rock drill and of the Ingersoll-Rand Company", Compressed Air Magazine: 3,679–80 (a lively description of the way in which he was encouraged to design the rock drill).
    WK

    Biographical history of technology > Ingersoll, Simon

  • 15 Ramsden, Jesse

    [br]
    b. 6 October 1735 (?) Halifax, Yorkshire, England
    d. 5 November 1800 Brighton, Sussex, England
    [br]
    English instrument-maker who developed machines for accurately measuring angular and linear scales.
    [br]
    Jesse Ramsden was the son of an innkeeper but received a good general education: after attending the free school at Halifax, he was sent at the age of 12 to his uncle for further study, particularly in mathematics. At the age of 16 he was apprenticed to a cloth-worker in Halifax and on completion of the apprenticeship in 1755 he moved to London to work as a clerk in a cloth warehouse. In 1758 he became an apprentice in the workshop of a London mathematical instrument-maker named Burton. He quickly gained the skill, particularly in engraving, and by 1762 he was able to set up on his own account. He married in 1765 or 1766 the youngest daughter of the optician John Dollond FRS (1706– 61) and received a share of Dollond's patent for making achromatic lenses.
    Ramsden's experience and reputation increased rapidly and he was generally regarded as the leading instrument-maker of his time. He opened a shop in the Haymarket and transferred to Piccadilly in 1775. His staff increased to about sixty workers and apprentices, and by 1789 he had constructed nearly 1,000 sextants as well as theodolites, micrometers, balances, barometers, quadrants and other instruments.
    One of Ramsden's most important contributions to precision measurement was his development of machines for obtaining accurate division of angular and linear scales. For this work he received a premium from the Commissioners of the Board of Longitude, who published his descriptions of the machines. For the trigonometrical survey of Great Britain, initiated by General William Roy FRS (1726–90) and continued by the Board of Ordnance, Ramsden supplied a 3 ft (91 cm) theodolite and steel measuring chains, and was also engaged to check the glass tubes used to measure the fundamental base line.
    [br]
    Principal Honours and Distinctions
    FRS 1786; Royal Society Copley Medal 1795. Member, Imperial Academy of St Petersburg 1794. Member, Smeatonian Society of Civil Engineers 1793.
    Bibliography
    Instruments, London.
    1779, "Description of two new micrometers", Philosophical Transactions of the Royal Society 69:419–31.
    1782, "A new construction of eyeglasses for such telescopes as may be applied to mathematical instruments", Philosophical Transactions of the Royal Society 73:94–99.
    Further Reading
    R.S.Woodbury, 1961, History of the Lathe to 1850, Cleveland, Ohio; W.Steeds, 1969, A History of Machine Tools 1700–1910, Oxford (both provide a brief description of Ramsden's dividing machines).
    RTS

    Biographical history of technology > Ramsden, Jesse

  • 16 Rateau, Auguste Camille-Edmond

    [br]
    b. 13 October 1863 Royan, France
    d. 13 January 1930 Neuilly-sur-Seine, France
    [br]
    French constructor of turbines, inventor of the turbo compressor and a centrifugal fan for mine ventilation.
    [br]
    A don of the Ecole Polytechnique and the Ecole Supérieure des Mines in Paris, Rateau joined the French Corps des Mines in 1887. Between 1888 and 1898 he taught applied mechanics and electro technics at the Ecole des Mines in St-Etienne. Trying to apply the results of his research to practise, he became into contact with commercial firms, before he was appointed Professor of Industrial Electricity at the Ecole Supérieure des Mines in Paris in 1902. He held this position until 1910, although he founded the Société Anonyme Rateau in Paris in 1903 which by the time of his death had subsidiaries in most of the industrial centres of Europe. By the middle of the nineteenth century, when the increasing problems of ventilation in coal mines had become evident and in many countries had led to several unsatisfactory mechanical constructions, Rateau concentrated on this problem soon after he began working in St-Etienne. The result of his research was the design of a centrifugal fan in 1887 with which he established the principles of mechanical ventilation on a general basis that led to future developments and helped, together with the ventilator invented by Capell in England, to pave the way for the use of electricity in mine ventilation.
    Rateau continued the study of fluid mechanics and the applications of rotating engines, and after he had published widely on this subject he began to construct many steam turbines, centrifugal compressors and centrifugal pumps. The multicellular Rateau turbine of 1901 became the prototype for many others constructors. During the First World War, when he was very active in the French armaments industry, he developed the invention of the automatic supercharger for aircraft engines and later diesel engines.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences, Prix Fourneyron 1899, Prix Poncelet 1911, Member 1918.
    Bibliography
    1892, Considérations sur les turbo-machines et en particulier sur les ventilateurs, St- Etienne.
    Further Reading
    H.H.Suplee, 1930, obituary, Mechanical Engineering 52:570–1.
    L.Leprince-Ringuet (ed.), 1951, Les inventeurs célèbres, Geneva: 151–2 (a comprehensive description of his life and the importance of his turbines).
    WK

    Biographical history of technology > Rateau, Auguste Camille-Edmond

  • 17 Reichenbach, Georg Friedrich von

    [br]
    b. 24 August 1772 Durlach, Baden, Germany
    d. 21 May 1826 Munich, Germany
    [br]
    German engineer.
    [br]
    While he was attending the Military School at Mannheim, Reichenbach drew attention to himself due to the mathematical instruments that he had designed. On the recommendation of Count Rumford in Munich, the Bavarian government financed a two-year stay in Britain so that Reichenbach could become acquainted with modern mechanical engineering. He returned to Mannheim in 1793, and during the Napoleonic Wars he was involved in the manufacture of arms. In Munich, where he was in the service of the Bavarian state from 1796, he started producing precision instruments in his own time. His basic invention was the design of a dividing machine for circles, produced at the end of the eighteenth century. The astronomic and geodetic instruments he produced excelled all the others for their precision. His telescopes in particular, being perfect in use and of solid construction, soon brought him an international reputation. They were manufactured at the MathematicMechanical Institute, which he had jointly founded with Joseph Utzschneider and Joseph Liebherr in 1804 and which became a renowned training establishment. The glasses and lenses were produced by Joseph Fraunhofer who joined the company in 1807.
    In the same year he was put in charge of the technical reorganization of the salt-works at Reichenhall. After he had finished the brine-transport line from Reichenhall to Traunstein in 1810, he started on the one from Berchtesgaden to Reichenhall which was an extremely difficult task because of the mountainous area that had to be crossed. As water was the only source of energy available he decided to use water-column engines for pumping the brine in the pipes of both lines. Such devices had been in use for pumping purposes in different mining areas since the middle of the eighteenth century. Reichenbach knew about the one constructed by Joseph Karl Hell in Slovakia, which in principle had just been a simple piston-pump driven by water which did not work satisfactorily. Instead he constructed a really effective double-action water-column engine; this was a short time after Richard Trevithick had constructed a similar machine in England. For the second line he improved the system and built a single-action pump. All the parts of it were made of metal, which made them easy to produce, and the pumps proved to be extremely reliable, working for over 100 years.
    At the official opening of the line in 1817 the Bavarian king rewarded him generously. He remained in the state's service, becoming head of the department for roads and waterways in 1820, and he contributed to the development of Bavarian industry as well as the public infrastructure in many ways as a result of his mechanical skill and his innovative engineering mind.
    [br]
    Further Reading
    Bauernfeind, "Georg von Reichenbach" Allgemeine deutsche Biographie 27:656–67 (a reliable nineteenth-century account).
    W.Dyck, 1912, Georg v. Reichenbach, Munich.
    K.Matschoss, 1941, Grosse Ingenieure, Munich and Berlin, 3rd edn. 121–32 (a concise description of his achievements in the development of optical instruments and engineering).
    WK

    Biographical history of technology > Reichenbach, Georg Friedrich von

  • 18 Bouchon, Basile

    SUBJECT AREA: Textiles
    [br]
    fl. c.1725 Lyon, France
    [br]
    French pioneer in automatic pattern selection for weaving.
    [br]
    In the earliest draw looms, the pattern to be woven was selected by means of loops of string that were loosely tied round the appropriate leashes, which had to be lifted to make that pick of the pattern by raising the appropriate warp threads. In Isfahan, Persia, looms were seen in the 1970s where a boy sat in the top of the loom. Before the weaver could weave the next pick, the boy selected the appropriate loop of string, pulled out those leashes which were tied in it and lifted them up by means of a forked stick. The weaver below him held up these leashes by a pair of wooden sticks and sent the shuttle through that shed while the boy was sorting out the next loop of string with its leashes. When the pick had been completed, the first loop was dropped further down the leashes and, presumably, when the whole sequence of that pattern was finished, all the loops had be pushed up the leashes to the top of the loom again.
    Models in the Conservatoire National des Arts et Métiers, Paris, show that in 1725 Bouchon, a worker in Lyon, dispensed with the loops of string and selected the appropriate leashes by employing a band of pierced paper pressed against a row of horizontal wires by the drawboy using a hand-bar so as to push forward those which happened to lie opposite the blank spaces. These connected with loops at the lower extremity of vertical wires linked to the leashes at the top of the loom. The vertical wires could be pulled down by a comb-like rack beside the drawboy at the side of the loom in order to pull up the appropriate leashes to make the next shed. Bouchon seems to have had only one row of needles or wires, which must have limited the width of the patterns. This is an early form of mechanical memory, used in computers much later. The apparatus was improved subsequently by Falcon and Jacquard.
    [br]
    Further Reading
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (a brief description of Bouchon's apparatus).
    M.Daumas (ed.), 1968, Histoire générale des techniques Vol. III: L'Expansion du
    machinisme, Paris (a description of this apparatus, with a diagram). Conservatoire National des Arts et Métiers, 1942, Catalogue du musée, section T, industries textiles, teintures et apprêts, Paris (another brief description; a model can be seen in this museum).
    C.Singer, (ed.), 1957, A History of Technology, Vol. III, Oxford: Clarendon Press (provides an illustration of Bouchon's apparatus).
    RLH

    Biographical history of technology > Bouchon, Basile

  • 19 Spencer, Christopher Miner

    [br]
    b. 10 June 1833 Manchester, Connecticut, USA
    d. 14 January 1922 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and inventor.
    [br]
    Christopher M.Spencer served an apprenticeship from 1847 to 1849 in the machine shop at the silk mills of Cheney Brothers in his native town and remained there for a few years as a journeyman machinist. In 1853 he went to Rochester, New York, to obtain experience with machinery other than that used in the textile industry. He then spent some years with the Colt Armory at Hartford, Connecticut, before returning to Cheney Brothers, where he obtained his first patent, which was for a silk-winding machine.
    Spencer had long been interested in firearms and in 1860 he obtained a patent for a repeating rifle. The Spencer Repeating Rifle Company was organized for its manufacture, and before the end of the American Civil War about 200,000 rifles had been produced. He patented a number of other improvements in firearms and in 1868 was associated with Charles E.Billings (1835–1920) in the Roper Arms Company, set up at Amherst, Massachusetts, to manufacture Spencer's magazine gun. This was not a success, however, and in 1869 they moved to Hartford, Connecticut, and formed the Billings \& Spencer Company. There they developed the technology of the drop hammer and Spencer continued his inventive work, which included an automatic turret lathe for producing metal screws. The patent that he obtained for this in 1873 inexplicably failed to protect the essential feature of the machine which provided the automatic action, with the result that Spencer received no patent right on the most valuable feature of the machine.
    In 1874 Spencer withdrew from active connection with Billings \& Spencer, although he remained a director, and in 1876 he formed with others the Hartford Machine Screw Company. However, he withdrew in 1882 to form the Spencer Arms Company at Windsor, Connecticut, for the manufacture of another of his inventions, a repeating shotgun. But this company failed and Spencer returned to the field of automatic lathes, and in 1893 he organized the Spencer Automatic Machine Screw Company at Windsor, where he remained until his retirement.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (briefly describes his career and his automatic lathes).
    L.T.C.Rolt, 1965, Tools for the Job, London; repub. 1986 (gives a brief description of Spencer's automatic lathes).
    RTS

    Biographical history of technology > Spencer, Christopher Miner

  • 20 Stuart, Herbert Akroyd

    [br]
    b. 1864 Halifax, England
    d. 1927 Perth, Australia
    [br]
    English inventor of an oil internal-combustion engine.
    [br]
    Stuart's involvement with engines covered a period of less than ten years and was concerned with a means of vaporizing the heavier oils for use in the so-called oil engines. Leaving his native Yorkshire for Bletchley in Buckinghamshire, Stuart worked in his father's business, the Bletchley Iron and Tin Plate works. After finishing grammar school, he worked as an assistant in the Mechanical Engineering Department of the City and Guilds of London Technical College. He also formed a connection with the Finsbury Technical College, where he became acquainted with Professor William Robinson, a distinguished engineer eminent in the field of internal-combustion engines.
    Resuming work at Bletchley, Stuart carried out experiments with engines. His first patent was concerned with new methods of vaporizing the fuel, scavenging systems and improvement of speed control. Two further patents, in 1890, specified substantial improvements and formed the basis of later engine designs. In 1891 Stuart joined forces with R.Hornsby and Sons of Grantham, a firm founded in 1815 for the manufacture of machinery and steam engines. Hornsby acquired all rights to Stuart's engine patents, and their superior technical resources ensured substantial improvements to Stuart's early design. The Hornsby-Ackroyd engines, introduced in 1892, were highly successful and found wide acceptance, particularly in agriculture. With failing health, Stuart's interest in his engine work declined, and in 1899 he emigrated to Australia, where in 1903 he became a partner in importing gas engines and gas-producing plants. Following his death in 1927, under the terms of his will he was interred in England; sadly, he also requested that all papers and materials pertaining to his engines be destroyed.
    [br]
    Bibliography
    July 1886, British patent no. 9,866 (fuel vapourization methods, scavenging systems and improvement of speed control; the patent describes Stuart as Mechanical Engineer of Bletchley Iron Works).
    1890, British patent no. 7,146 and British patent no. 15,994 (describe a vaporizing chamber connected to the working cylinder by a small throat).
    Further Reading
    D.Clerk, 1895, The Gas and Oil Engine, 6th edn, London, pp. 420–6 (provides a detailed description of the Hornsby-Ackroyd engine and includes details of an engine test).
    T.Hornbuckle and A.K.Bruce, 1940, Herbert Akroyd Stuart and the Development of the Heavy Oil Engine, London: Diesel Engine Users'Association, p. 1.
    KAB

    Biographical history of technology > Stuart, Herbert Akroyd

См. также в других словарях:

  • Mechanical explanations of gravitation — (or kinetic theories of gravitation) are attempts to explain the action of gravity by aid of basic mechanical processes, such as pressure forces caused by pushes, and without the use of any action at a distance. These theories were developed from …   Wikipedia

  • Mechanical resonance — This article is about mechanical resonance in physics and engineering. For a general description of resonance, see resonance. For mechanical resonance of sound including musical instruments, see acoustic resonance. For the music album by the… …   Wikipedia

  • Mechanical filter — Figure 1. A mechanical filter made by the Kokusai Electric Company intended for selecting the narrow 2 kHz bandwidth signals in SSB radio receivers. It operates at 455 kHz, a common IF for these receivers, and is dimensioned 45×15×15 mm ( …   Wikipedia

  • Mechanical calculator — An old Russian mechanical calculator. A mechanical calculator is a device used to perform the basic operations of arithmetic. Mechanical calculators are comparable in size to small desktop computers and have been rendered obsolete by the advent… …   Wikipedia

  • Mechanical Animals — This article is about the album. For the tour, see Mechanical Animals Tour. Mechanical Animals Studio album by …   Wikipedia

  • Mechanical Concrete — A Mechanical Concrete tire derived cylinder A Mecha …   Wikipedia

  • Mechanical puzzle — Part of a series on Puzzles …   Wikipedia

  • Mechanical Engineering Heritage (Japan) — Myriad year Japanese clock, Heritage No. 22 The Mechanical Engineering Heritage (Japan) (機械遺産, kikaiisan …   Wikipedia

  • Mechanical properties of DNA — The mechanical properties of DNA, which are directly related to its structure, are a significant problem for cells. Every process which binds or reads DNA is able to use or modify the mechanical properties of DNA for purposes of recognition,… …   Wikipedia

  • description — A delineation or account of a particular subject by the recital of its characteristic accidents and qualities. A written enumeration of items composing an estate, or of its condition, or of titles or documents; like an inventory, but with more… …   Black's law dictionary

  • description — A delineation or account of a particular subject by the recital of its characteristic accidents and qualities. A written enumeration of items composing an estate, or of its condition, or of titles or documents; like an inventory, but with more… …   Black's law dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»